A timescale analysis of the Northern Hemisphere temperature response to volcanic and solar forcing
نویسنده
چکیده
The Northern Hemisphere temperature response to volcanic and solar forcing in the time interval 1000– 1850 AD is studied using first a set of simulations with an intermediate-complexity climate model, driven by reconstructed forcings. Results are then compared with those obtained from the seven high-resolution reconstructed temperature records for the last millenium that are at present available. Focus of the analysis is on the timescale dependence of the response. Results between the model and the proxybased reconstructions are remarkably consistent. The response to solar forcing is found to equilibrate at interdecadal timescales, reaching an equilibrium value for the regression of 0.2–0.3C per W/m2. The time interval between volcanic eruptions is typically shorter than the dissipation timescale of the climate system, so that the response to volcanic forcing never equilibrates. As a result, the regression on the volcanic forcing is always lower than the equilibrium value and goes to zero for the longest temporal scales. The trends over the pre-anthropogenic period are found to be relatively large in all reconstructed temperature records, given the trends in the reconstructed forcing and the equilibrium value for the regression. This is at variance with a recent claim that reconstructed temperature records underestimate climatic variations at multi-centennial timescales.
منابع مشابه
The "little ice age": northern hemisphere average observations and model calculations.
Numerical energy balance climate model calculations of the average surface temperature of the Northern Hemisphere for the past 400 years are compared with a new reconstruction of the past climate. Forcing with volcanic dust produces the best simulation, whereas expressing the solar constant as a function of the envelope of the sunspot number gives very poor results.
متن کاملSolar influence on climate during the past millennium: results from transient simulations with the NCAR Climate System Model.
The potential role of solar variations in modulating recent climate has been debated for many decades and recent papers suggest that solar forcing may be less than previously believed. Because solar variability before the satellite period must be scaled from proxy data, large uncertainty exists about phase and magnitude of the forcing. We used a coupled climate system model to determine whether...
متن کاملSolar Latitudinal Distribution of Solar Flares around the Sun and Their Association with Forbush Decreases during the Period of 1986 to 2003
Solar flare events of high importance were utilised to study solar latitudinal frequency distribution of the solar flares in northern and southern hemisphere for the solar cycle 22 to recent solar cycle 23. A statistical analysis was performed to obtain their relationship with sudden storm commencement (SSCs) and Forbush decrease events (Fd) of cosmic ray intensity. An 11-year cyclic variation ...
متن کاملCentennial-scale solar forcing of the South American Monsoon System recorded in stalagmites.
The South American Monsoon System (SAMS) is generally considered to be highly sensitive to Northern Hemisphere (NH) temperature variations on multi-centennial timescales. The direct influence of solar forcing on moisture convergence in global monsoon systems on the other hand, while well explored in modeling studies, has hitherto not been documented in proxy data from the SAMS region. Hence lit...
متن کاملDynamic winter climate response to large tropical volcanic eruptions
[1] We have analyzed the mean climate response pattern following large tropical volcanic eruptions back to the beginning of the 17th century using a combination of proxybased reconstructions and modern instrumental records of cold-season surface air temperature. Warm anomalies occur throughout northern Eurasia, while cool anomalies cover northern Africa and the Middle East, extending all the wa...
متن کامل